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1. EXECUTIVE SUMMARY 

The use of software libraries and components in critical applications is skyrocketing, and there has 
been very little attention to their security. Working with Air Force Research Laboratory, researchers 
from Aspect Security have created a new approach to analyzing third party Java libraries for 
vulnerabilities and potential hazards.  This report documents the challenges in this endeavor, the 
tasks performed to create such a tool, and the results from analyzing thirty of the most common 
libraries downloaded from the Central repository.  

Eighty percent of code in modern web applications comes from various third party libraries and 
frameworks [1]. In 2012, Aspect studied downloads of open source libraries from the Central 
repository and found that 26% of those downloads were of libraries containing known vulnerabilities 
[1]. When a library is vulnerable, it opens an application to an attack and could lead to an exploit 
leveraging the full privilege of the application, sensitive data access, denial of service, as well as 
executing transactions without authorization. According to data gathered in this earlier study, 
analyzing 29.8 million libraries, the majority of library flaws are yet to be discovered [1] and most 
organizations do not seem to have a process in place for validating or analyzing the open source and 
third party libraries they use every day.  

The primary motivation for this research is to take a closer look at the security of open source 
libraries and frameworks. Where our last research focused on “known” vulnerabilities in libraries, this 
research targets previously “unknown” vulnerabilities. We hope to gain the ability to automatically 
determine latent vulnerabilities and hazards that are currently hidden in these libraries. Creating such 
a tool to would provide greater transparency regarding these libraries’ security posture and allow 
developers to make better-informed decisions when implementing a library in their software 
development efforts.  

Our approach to building this tool was to combine the idea of “fuzzing,” sending random data to an 
interface of some sort, with an instrumentation-based vulnerability detector. For the fuzzing piece, we 
created a custom fuzzing framework that overcomes some of the challenges with speed and scale 
associated with fuzzing such a large Application Programming Interface (API) and complex data 
structures. For the detection engine, we leveraged the work Aspect has performed previously 
building Contrast [4]. Aspect has successfully used Contrast to find vulnerabilities in web applications 
and this seemed to be a logical application of the technology. This approach allowed us to do “deep” 
analysis of methods, including not only the code of the method itself, but also all the code invoked 
within the scope of that method. 

We applied this tool to the latest version of 31 of the most popular Java libraries, including web 
frameworks and security libraries. These libraries are extremely widely used, and have presumably 
received the most security scrutiny of any of the open source libraries. The results of the experiment 
were encouraging. These libraries comprised over 110,000 methods. In them, we found a total of 19 
vulnerabilities in 4 different libraries. These flaws range from weak encryption algorithms to path 
traversal. In addition, we identified over 2,300 hazards – these are not full vulnerabilities but possibly 
dangerous effects of methods that developers should be aware of when using a library. 

While we did not achieve the code coverage that we had hoped for, we believe that this technique is 
promising. We hope that this work can eventually lead to a market for third-party components that 
makes it possible to take security into account when building critical systems. 
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2. INTRODUCTION 

Organizations have long been taking steps to improve the code quality and overall security posture of 
their custom written code. However, very seldom do these organizations pay significant attention to 
the security of the innumerable libraries being imported into their Java projects every day. Companies 
often falsely assume that the open source libraries they are using contain secure and high quality 
code due to their widespread adoption in the software development industry. In addition, the library 
code used in an application does not generally get updated when a new version of that library 
becomes available. If the new version contains patched vulnerabilities then the applications running 
the previous version will contain further known vulnerabilities. 

Libraries often have full access to each layer of a software product including business functions, data 
access, and resource management. The average Java application utilizes more than 30 libraries that 
typically comprise 80% of the application code. A major concern is that although a project may be 
utilizing a significant number of libraries, only a small portion of each one is actually utilized by the 
programmer. Given this fact, the important question is how do we know the rest of the library is not 
doing something malicious? Since library use is so widespread, there exists a need to have the ability 
to analyze and test the functionality. Doing this analysis on an entire library allows us to check it for 
vulnerabilities and potential hazards such as denial of service.  

2.1 Vulnerabilities and Hazards 

This study makes a distinction between “vulnerabilities” and “hazards.”  We consider a method 
vulnerable if a developer is likely to call that method with data that could cause an undesirable 
outcome. For example, if a developer calls the java.sql.Statement.execute() method with data that 
includes input from the user, this code is considered vulnerable to a Structured Query Language 
(SQL) injection attack. 

A “hazard,” on the other hand, is a method that has an unexpected outcome that may or may not 
cause an undesirable outcome.  For example, the output from the Throwable.getMessage() call may 
often include some of the user’s input.  Although it is generally unknown to developers and is not 
always dangerous, it is a potential hazard.  Developers should know that the message from this call 
is “tainted” with user input, and should be handled carefully.  In this study, we focused only on 
whether a method was a propagator of tainted data. There are many other hazards that it might be 
possible to explore with this technique. 

2.2 Related Works 

There exist few previous efforts in the area of library security analysis. This is largely because most 
information security efforts are in the area of identifying and mitigating vulnerabilities in custom code. 
The most relevant research done on library security was the paper “Unfortunate Reality of Insecure 
Libraries” by Aspect Security. This research brings to light the magnitude at which organizations use 
insecure libraries every day. Aspect Security analyzed 31 of the most frequently downloaded libraries 
across multiple versions and established that 26% of them had known vulnerabilities in their latest 
version. This paper was a motivating factor for our research because it sparked an interest in what 
other unknown vulnerabilities may exist.  

There have been several efforts to do fuzzing of Java programs. One particularly interesting paper 
was by Karthick Jayaraman and David Harvison in their effort to create a white box fuzzer for Java 
called JFuzz [5]. The JFuzz tool is a concolic fuzzer built on top of the NASA Java PathFinder project. 



 

Approved for Public Release; Distribution Unlimited. 
3 

JFuzz uses a combination of concrete and symbolic execution to do constraint solving in its effort to 
do whitebox fuzzing. We believe that this tool is very powerful and useful for fuzzing smaller libraries 
since the constraint solving portion can be very time consuming. In the future it may be beneficial to 
use JFuzz to do the constraint-solving portion of the analysis separately. Once the constraint analysis 
is completed, we can use those results as input to achieve better code coverage.  

Another interesting paper on whitebox fuzzing called “Grammar-Based Whitebox Fuzzing” written by 
researchers at Microsoft and Massachusetts Institute of Technology (MIT) contains great ideas on 
how to achieve greater code coverage [6]. The writers take a grammar-based approach to overcome 
many of the problems with whitebox testing such as complex structured inputs. This grammar-based 
approach allows for much better coverage of control paths and was evaluated using with the Internet 
Explorer Version 7 JavaScript interpreter program. We believe that such an approach for Java based 
programs could benefit our own research efforts by increasing code coverage.  

2.3 Interactive Application Security Testing 

The Contrast Interactive Application Security Testing (IAST) tool developed by Aspect Security is 
targeted towards not only identifying vulnerabilities in custom code but also in libraries. Reference [4] 
explains how this security technology works. The application is able to track data throughout its 
lifecycle inside an application and is able to analyze whether that data pathway could be used for 
malicious intent. Data can be tracked as various imported libraries use and execute it.  Contrast then 
looks for vulnerabilities such as injection, improper encryption algorithms, and weak data validation 
implementations to notify and inform an organization. We decided to use this software in our effort to 
locate vulnerabilities because of its comprehensive rules engine and ability to provide meaningful 
results without the static of false positives.  
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3. METHODS, ASSUMPTIONS, AND PROCEDURES 

Analyzing Java libraries for security vulnerabilities and hazards required several tasks. The first was 
to create a methodology for isolating all the classes and methods inside the library that needed to be 
tested. The second task was to generate a fuzzer that would exercise the desired classes and 
methods. The fuzzer’s function is to provide the largest possible code coverage of each library 
analyzed. The third task was to add the Contrast security testing software to the fuzzing process in 
order to detect vulnerabilities and hazards. These findings are based on the set of rules that allow 
Contrast to locate vulnerabilities at execution time. The fourth and final task was to exercise thirty-one 
of the most commonly used Java libraries and to analyze the data gathered for vulnerabilities and 
hazards.  

3.1 Tasks 

To address task one, exercisable classes and methods were restricted to public or protected 
methods inside each class. Interfaces and abstract classes were also included in the testing 
whenever possible. The exercise of these classes was accomplished by searching through the 
classes loaded in the JVM that implemented or extended these interfaces or abstract classes. Once 
a match was found, the program attempted to instantiate the implementing class in order to exercise 
its methods. In order to test all of these classes, all dependencies needed to be loaded into the class 
loader. These dependencies were downloaded from the central Maven repository programmatically 
using the Eclipse Aether tool for working with repositories [10]. Once the program is provided the 
name of the JAR file to be exercised, all necessary dependencies are downloaded from Maven and 
loaded into the classpath.  

For task two, a robust fuzzer was implemented in order to get the most code coverage possible. 
Because there are practically unlimited inputs to exercise the library with, we established a maximum 
time period of 10 minutes for fuzzing. The fuzzer attempts to create an instance of each class chosen 
to be exercised by using its various or methods that return an instance of that particular class. Once 
an instance is created, it is stored in an object pool and re-used as necessary. This process was 
critical to achieving higher code coverage since data loaded into the objects located in the object pool 
are persisted throughout the analysis of the entire library. The resulting code coverage showed an 
average of 42% of methods, 36% instructions, and 18% of lines being exercised throughout our 
testing of thirty-one Java libraries.  

Adding Contrast to the analysis and exercise process of the libraries allowed us to leverage the taint 
propagation and security rules defined in the tool. Each parameter passed to a method that was to be 
exercised was marked as tainted. In the event that the method returned a value that was tainted, our 
program marked that method as potentially hazardous. A method would return a tainted value if no 
validation or encoding was completed on the data according to Contrast’s rules. This also provided 
us with detection capabilities for vulnerabilities such as SQL Injection, weak cryptography, path 
traversal, and APIs vulnerable to denial-of-service (DOS) attacks.  

To the fourth task, thirty of the most commonly downloaded Java libraries were exercised. The 
results are first stored into a database and then exported to Comma Separated Values (CSV) format. 
The database data included information on each method exercised: its corresponding class 
information, any hazards or vulnerabilities detected, and code coverage statistics based on lines, 
methods, and instructions. As part of the Contrast output, the Extensible Markup Language (XML) 
data for each hazard and vulnerability detected was also included in the results. This included the 
stack trace leading to each of the vulnerabilities made available for triage and validation purposes.  
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3.2 Architecture of Fuzzing Tool 

The library analysis tool created in this effort is comprised of several key components. This section 
will outline the role of each component created to deliver vulnerabilities and hazards contained inside 
libraries. It will also describe how each component works and the technology utilized to create it.  

 

Figure 1 - Process for Library Analysis 

3.3 Method for Dependency Resolution 

In order to exercise a library’s functionality, all dependencies for that library must be resolved and 
loaded onto the classpath of the Java Virtual Machine. We have chosen to use a tool called Aether 
[10] to programmatically retrieve all dependencies for the library to be analyzed. Each dependency 
for the library was downloaded into a newly created Maven repository and then loaded onto the 
classpath at runtime. This approach ensures that all dependencies are resolved when the library’s 
classes and methods are being exercised. In the event that a library analyzed at a later time uses an 
already downloaded dependency, the necessary file was re-used.  
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3.4 Method for Fuzzing 

Once a library’s dependencies are resolved, a fuzzer is necessary to get the most code coverage. 
The implemented fuzzer attempts to create instances of each class inside a library that contains 
public or protected methods. Constructing these instances is a recursive process since the creation 
of an instance typically requires instances of various objects specified as parameters. 

The simplest iteration in creating the fuzzer was exercising classes and methods that only take 
primitive types as arguments. For this task we chose to leverage a library called DummyCreator [3] 
that creates instances of primitive types. For more complex fuzzing that requires instances of 
complex objects, a custom solution was implemented. The fuzzer consists of several components 
called “Makers” that are responsible for creating an instance of a class by either using its constructor, 
methods, or class type. In the event that a class is abstract or an interface, the corresponding Maker 
object will attempt to locate implementing classes and instantiate them instead. This methodology 
allows us to get much larger code coverage because we are also attempting to instantiate abstract 
classes and interfaces that are commonly passed as argument types.  

For each method being fuzzed, multiple instances of its parameters are created and then permutated 
to generate a random set of arguments. Once the various permutations are generated, each method 
is executed a thousand times if there are enough permutations. The execution of these methods is 
spread through fifteen separate threads that are assigned tasks to execute a particular method. This 
number was chosen via trial-and-error due to performance considerations and memory consumption 
observed throughout testing. It was determined that executing methods for all possible permutations 
resulted in out of memory errors. The decision to limit method execution to one thousand also 
demonstrated that code coverage was not affected by a significant percentage.  

3.5 Method for Code Coverage 

Every time a class is to be exercised, it is loaded into a component called a “Coverage Tracker”. This 
component utilizes the Java Code Coverage Library (JaCoCo) [8] library for determining code 
coverage. Once the class is loaded into the coverage tracker, each line of code that is exercised from 
its methods is tracked. The coverage tracker also tracks information such as total methods executed, 
instructions executed, and branches executed. For the purpose of this research, we are mainly 
interested in the number of methods and lines of code executed in our calculation of code coverage. 
Once the exercise of a class is completed, its code coverage data is stored and added to the overall 
code coverage for that particular library.  

3.6 Method for Contrast Integration 

The Contrast tool has the capability to locate vulnerabilities inside Java Web Applications. This is 
typically done by tracking data throughout execution and analyzing the code using this data. To 
integrate Contrast with our tool, each class, method, and parameter needed to be tracked. Prior to 
the exercise of a class’ methods, an instance of that method’s declaring class and all its arguments 
were provided to the Contrast engine. The engine then tracked the data throughout the remainder of 
that library’s analysis.  

Whenever a method is exercised, all the data that is passed to that method is marked as tainted. If 
that method returns a value, it must be checked to determine whether or not it is still tainted. In the 
event that the return value contains tainted data, we mark this method as a potential hazard because 
we cannot be sure that the returned value isn’t malicious. Contrast determines if the data is tainted by 
applying a complex set of rules to check for events such as validation or escaping. 
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Contrast also provides vulnerability analysis for each method exercised. For example, if a method 
makes a call to System.exit() or uses an ineffective encryption algorithm, Contrast will create an 
output displaying the trace of the vulnerability inside the library. The vulnerability analysis provided by 
the Contrast engine is “deep,” meaning that not only the code of the single method being fuzzed is 
examined, but all the code within the scope of that method, including other libraries and the Java 
runtime itself. 

3.7 Method for Result Storage and Export 

The results gathered from exercising each library are stored in three separate database tables. The 
“JAR Coverage” table contains information about code coverage for each library exercised. The JAR 
Coverage data includes: 

 Total lines of code inside the library 
 Lines of code successfully executed 
 Total methods inside the library’s classes 
 Number of methods successfully executed 
 Total instructions inside the library’s code 
 Number of instructions successfully executed 
 Total branches inside the library’s code 
 Number of successful branches explored 

The second database table contains method execution data and is called the “Method Tracker”. This 
table contains: 

 Name of each method exercised 
 The declaring class of each method 
 Total number of execution attempts for that method 
 Number of times that method was successfully executed 
 Number of Hazards that method resulted in 

The third and final database table is called “Hazards” and it contains all the hazards and 
vulnerabilities determined by Contrast. The table contains the following data: 

 Method name that resulted in the hazard 
 Corresponding class name 
 Rule ID that shows the rule that is associated with that hazard or vulnerability 
 Name of the library that the hazard or vulnerability belongs to 
 The hash value assigned by Contrast 
 The XML trace of the hazard that displays the exact location of the hazard 

 
Once all results are stored in the database, there is functionality to export the database tables into 
CSV format that can then be imported into a processing tool such as Microsoft Excel.  
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3.8 Technologies 

Since our effort is to analyze Java libraries for security vulnerabilities, we chose to implement our tool 
with version 1.6 the Java programming language. Some of the other tools in the effort included: 

 Eclipse Juno – Development environment 
 Maven – Dependency management 
 Aether – Managing dependencies programmatically. 
 Mockito [7] – A mocking framework for Java 
 Java Reflections Library [2] – Dynamic Method invocation 
 Contrast Engine – Vulnerability and hazard detection 
 Java DummyCreator library [3] – Creating mock objects for primitive types 
 JaCoCo – Tracking code coverage 
 ObjectDB – Database for storing result data 
 JUnit – Unit testing of components 
 Log4j – Logging 
 Subversion – Version control system 

3.9 Implementation of User Interface  

For this project we implemented a simple command line user interface. The user simply needs to 
provide a few pieces of information regarding the library they want to analyze and the program 
handles the rest. This input string consists of the Group ID, Artifact ID, and version of the library to be 
analyzed from Maven’s central repository. An example of this sample input string looks like 
“org.apache.struts:struts-core:jar:1.3.10”. The third portion of the string specifies that we want to 
download the “JAR” file for that particular library.  

The command line interface also allows the user to provide a second argument. This argument is a 
path to an input file that has the location of the library the user wants to analyze. This file should also 
contain the paths to all dependencies that the library may depend on. A Boolean flag at the end of 
each entry in the file tells the program whether or not it is a dependency or if it is to be analyzed. A 
user may utilize this feature if they want to analyze a custom library that does not exist in the Maven 
repository. This feature can also be used in the event that there is no network connection and Maven 
cannot be used to resolve dependencies.  
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Figure 2 - Example input file 

Once the user starts the program and provides the correct input, the program will attempt to 
download the library as well as all its dependencies. In the event of a failure, the program will simply 
stop execution. Failures can occur if the input string is not valid, the library does not exist, or there is 
no network connection that can resolve the library information with Maven. If the user provided an 
input file, the program will validate that all the files exist and will continue execution. When using the 
input file approach, the program will assume that all dependencies are valid and that no other 
dependencies are necessary.  

Throughout the program’s execution the user will be given information on which method is currently 
being exercised. This information consists of how many successful executions have occurred as well 
as any failures encountered. Once all possible methods are executed, the program will provide three 
separate CSV files as output. These files will be prefixed by the name of the library and will contain 
information on hazards found, method execution details, as well as an overall summary with code 
coverage data. These files will be created in the same directory as the library analysis tool.  

The library analysis tool will also generate a file called report.odb. This file contains the same data as 
the three CSV files but can be opened using the ObjectDB [9] explorer tool. Using this tool, the user 
can write SQL queries to explore the result data if desired.  

3.10 Extracting Methods and Classes for Fuzzing 

Once the program reconciles the input library and all its dependencies, we had to determine exactly 
what methods to exercise and how to accomplish this successfully. The first task was to load the 
library we want to analyze onto the classpath along with all its dependencies. Instead of writing a 
custom solution for doing runtime metadata analysis of libraries, we chose to use an open source 
solution called Reflections [2].   

The Reflections library contains functionality to get information such as methods, fields, constructors, 
and other metadata about a JAR file. This library can take as a parameter a number of “Scanners” 
that act as filters when searching for particular metadata within a JAR file. It was soon determined 
that these scanners were not robust enough to retrieve all the data that was needed for our 
purposes. The source code of the Reflections library was downloaded and several modifications 
were made. One such modification was to add the ability to extract all methods for every class in an 
entire JAR file. With the modifications, the Reflections library has the ability to take a JAR file as input 
and return a list of objects that contain every method as well as what its declaring class is.  

The modified version of the Reflections library was then re-compiled and imported into the library 
analysis project. After extracting all the methods and classes from the JAR the user wishes to 
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analyze, we were able to choose only public and protected methods. The project would then use this 
list to exercise all the methods inside it.  

3.11 Implementing the Fuzzer 

The initial iterations of the library analysis project consisted of only fuzzing methods that had primitive 
types as parameters. The initial fuzzer would create multiple instances of primitive types and then 
store them into an object pool for later use. These primitive types contained normal and boundary 
values. For example, when creating instances of an integer, it would be assigned 
Integer.MAX_VALUE, Integer.MIN_VALUE, 0, 1, and -1 value. Using this approach resulted in low 
code coverage and it was determined that a fuzzer for more than just primitive types was necessary.  

In order to increase code coverage, we implemented a fuzzer that can create complex objects. 
Initially, a tool called DummyCreator [3] was used to create both primitive and complex types. 
However, it was soon determined that when working with complex types, the tool often times failed 
and was extremely unreliable. It was then decided to use the DummyCreator tool to only create 
instances of primitive types since the values were more random. For complex types, a custom 
solution was necessary.  

This custom solution for fuzzing methods that take complex types consisted of the creation of objects 
called “Makers”. A maker was created for constructors, methods, abstract types, interfaces, and 
arrays. These various Makers would attempt to create an instance of a class by using its various 
methods or constructors. If the class is abstract, the corresponding maker would attempt to locate a 
subclass and recursively try to instantiate that object. In the event of an interface, the maker would 
attempt to locate an implementing class somewhere on the classpath and try to instantiate that 
object. Another tool that is used at a limited capacity is Mockito [7]. This tool provides the ability to 
create mock objects for objects that make use of interfaces or abstract classes in the event that our 
other methods are exhausted. 

When an instance of a class is created, it is put into an object pool so that it can be used whenever it 
is needed. The fuzzer tries to create multiple instances of each class in order to achieve better code 
coverage during code exercise. Since all instances of objects were stored in a pool, the same objects 
were often re-used. This re-use allowed for the modifications to the tainted object to be persisted 
throughout the fuzzing process. When the fuzzer attempts to exercise a method, it retrieves the 
necessary parameters from the object pool. It then creates all possible permutations of these objects 
and executes the method with instances from the permutation pool.  

One behavior that was observed when exercising methods with random permutations of its 
parameters is a slight inconsistency in the results. This inconsistency is small enough to be negligible 
but can be useful if the user wants to analyze a library over several iterations using randomized 
values.  

The fuzzer executes each method a maximum of 1000 times. The exact number of executions 
depends on the amount of permutations created. The number of permutations depends on the 
amount of the method’s arguments. For example, if the method has zero parameters, it will only be 
executed once. But if it has 10 parameters, it will be executed 1000 times since executing 10! 
Permutations would cause various memory and performance issues. The limit of 1000 executions 
was determined after analysis of the program’s memory consumption. Since the method execution is 
done in a separate thread, a maximum timeout of 30 seconds is enforced in order to prevent 
deadlock. If the thread takes more than 30 seconds to exercise a method, it is interrupted and given 
another task. The need for this limit was determined after extremely long execution periods for certain 
methods (greater than 2 hours).  
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3.12 Integration with Contrast Engine 

The fuzzer had to be integrated with the Contrast tool’s engine component in order to retrieve hazard 
and vulnerability data. The Contrast engine component is able to track a piece of data throughout its 
lifecycle in an application. For this project, prior to exercising a method, we tell Contrast to track all 
the method’s parameters. If a method returns a value, we ask Contrast if the value returned is 
tainted. If so, we mark that particular method as a hazard.  

Contrast has a set of complex rules that it applies to every piece of code that is executed. These 
rules check for the use of unsafe method calls and libraries. If Contrast finds the execution of unsafe 
code, it reports a finding. The finding contains some very useful information such as the method, the 
stack trace for the unsafe execution, and the Contrast rule that was broken.   

3.13 Code Coverage and Results   

Code coverage was implemented using the Java Code Coverage Library (JaCoCo). This library is 
able to track the entire contents of a Java class and determine exactly what code was executed 
down to the line number level. Prior to using JaCoCo, code coverage was only calculated at the 
method level by manually calculating the total methods in a class and then determining which were 
successfully executed.  

Results from Contrast consisted of an XML string that contained the trace of any hazard/vulnerability 
reported. The library analysis tool uses an object database (ObjectDB) to store all of the code 
coverage and result data. This database is then queried and the results are written to three separate 
CSV files.  

 

 

  

 

 
 
 



 

Approved for Public Release; Distribution Unlimited. 
12 

4. RESULTS AND DISCUSSION 

Our analysis consisted of 31 separate JAR files that contained some of the most popular web 
application frameworks, security libraries, and most frequently downloaded utilities. This section will 
discuss in detail the behavior observed throughout the analysis process and discuss the accuracy of 
the results. The table below will outline the overview of data collected throughout our analysis.  

Table 1 - Overall data metrics captured by analysis 

Number of methods executed 47,279 

Lines of code executed 60,090 

Number of instructions executed 920,998 

Branches of code explored 8,038 

Total successful method executions 252,612 

Total attempted method executions 457,953 

Vulnerabilities reported by Contrast 18 

Hazards reported by Contrast 2325 

4.1 Vulnerabilities Reported  

The Contrast tool that was incorporated into the library analyzer reported 19 potential vulnerabilities 
inside of the 31 JAR files exercised. These findings were located in: 

Table 2 - Vulnerabilities identified 

JAR File Vulnerability Number of 
Instances 

Undisclosed JAR #8 • Banned API 
• Unsafe Readline 

1 
1 

Undisclosed JAR #25 • Bad Use of Media Access Control 
(MAC)Cryptography 

• Weak random number generation 

13 
2 

Undisclosed JAR #17 • Directory Path Traversal 1 
 Undisclosed JAR #29 • XML eXternal Entity (XXE) 1 

 

The above table shows that potential vulnerabilities were reported in only 12.9% of the libraries 
analyzed. This observation is definitely positive since it is less than the 26% average discovered in 
Aspect’s research last year with regard to Common Vulnerabilities and Exposures (CVE’s). However, 
it is important to mention that the libraries studied are the most scrutinized in existence, and only the 
latest versions of these libraries were analyzed. Older versions would more than likely contain a 
higher percentage of vulnerabilities.  
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4.2 Hazards Reported 

Throughout our analysis, libraries were exercised in an out of context manner. This means that a 
library such as Struts, was exercised simply by invoking its public and protected methods only. The 
library was not part of a web application with a functioning server or valid configuration files typically 
provided to a framework. The role of the “Hazard” in our results is to notify the user whether or not 
they can trust the data received from a method in each library analyzed. When a class receives some 
tainted data and the methods in that class are exercised, a hazard will be reported if the return value 
of the method is tainted. Taint is determined by Contrast’s ability to follow the data throughout its 
lifecycle and checking whether or not it has been escaped or validated in a proper way.  

Contrast has the ability to track a tainted piece of data until it is garbage collected. If a piece of data is 
split or merged into another object, the resulting data is marked as tainted and tracked separately. 
For each hazard reported, we are able to see a trace of the data in order to better understand exactly 
how the library may be using any provided input.  

Analysis of 31 libraries resulted in 2325 potential hazards.  

Table 3 - Number of Hazards for Analyzed Libraries 

JAR File Name Number of Hazards 
Undisclosed JAR #1 4 
Undisclosed JAR #2 11 
Undisclosed JAR #3 408 
Undisclosed JAR #4 57 
Undisclosed JAR #5 58 
Undisclosed JAR #6 32 
Undisclosed JAR #7 2 
Undisclosed JAR #8 52 
Undisclosed JAR #9 3 
Undisclosed JAR #10 12 
Undisclosed JAR #11 287 
Undisclosed JAR #12 722 
Undisclosed JAR #13 88 
Undisclosed JAR #14 43 
Undisclosed JAR #15 55 
Undisclosed JAR #16 5 
Undisclosed JAR #17 38 
Undisclosed JAR #18 39 
Undisclosed JAR #19 47 
Undisclosed JAR #20 15 
Undisclosed JAR #21 53 
Undisclosed JAR #22 11 
Undisclosed JAR #23 1 
Undisclosed JAR #24 11 
Undisclosed JAR #25 24 
Undisclosed JAR #26 82 
Undisclosed JAR #27 14 
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Undisclosed JAR #28 8 
Undisclosed JAR #29 22 
Undisclosed JAR #30 19 
Undisclosed JAR #31 102 
Total 2325 

 

4.3 Code Coverage  

After analyzing 31 JAR files, the average code coverage with respect to method executions is 42%. 
However, code coverage based off of line executions, is only 18.15%. There are several factors that 
could attribute to this behavior. One assumption is that the code could contain significant amounts of 
boilerplate code or the general bloating of Java classes. It is also important to remember that the total 
method count shown in table 2 below includes private methods that were not part of our analysis. 
Line number values include non-executable code such as attribute definitions and import statements.  

Table 4 - Code coverage by Jar File 

Jar File Name 
Successful 
Methods 

Total 
Methods 

Method 
Percentage 

Successful 
Lines 

Total 
Lines 

Lines 
Percentage 

Undisclosed JAR #1 25 203 12.32% 33 803 4.11% 
Undisclosed JAR #2 431 1161 37.12% 509 1794 28.37% 
Undisclosed JAR #3 15366 27105 56.69% 17733 91994 19.28% 
Undisclosed JAR #4 15030 27531 54.59% 16990 92155 18.44% 
Undisclosed JAR #5 253 1373 18.43% 633 5555 11.40% 
Undisclosed JAR #6 1649 3673 44.90% 3607 12820 28.14% 
Undisclosed JAR #7 161 1234 13.05% 384 4114 9.33% 
Undisclosed JAR #8 3 236 1.27% 14 618 2.27% 
Undisclosed JAR #9 29 108 26.85% 71 276 25.72% 
Undisclosed JAR #10 494 2158 22.89% 1439 10800 13.32% 
Undisclosed JAR #11 1190 3985 29.86% 400 1659 24.11% 
Undisclosed JAR #12 4486 11606 38.65% 1029 3497 29.43% 
Undisclosed JAR #13 989 2177 45.43% 2135 9716 21.97% 
Undisclosed JAR #14 600 1892 31.71% 1789 11240 15.92% 
Undisclosed JAR #15 203 571 35.55% 601 2308 26.04% 
Undisclosed JAR #16 306 1012 30.24% 836 4804 17.40% 
Undisclosed JAR #17 376 2090 17.99% 1110 11987 9.26% 
Undisclosed JAR #18 653 2382 27.41% 1653 9218 17.93% 
Undisclosed JAR #19 536 1450 36.97% 1338 7387 18.11% 
Undisclosed JAR #20 1043 2934 35.55% 2005 10734 18.68% 
Undisclosed JAR #21 517 3815 13.55% 1004 13743 7.31% 
Undisclosed JAR #22 13 87 14.94% 32 550 5.82% 
Undisclosed JAR #23 1 2 50.00% 1 8 12.50% 
Undisclosed JAR #24 88 220 40.00% 13 310 4.19% 
Undisclosed JAR #25 178 388 45.88% 324 1664 19.47% 
Undisclosed JAR #26 456 2245 20.31% 964 8213 11.74% 
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Undisclosed JAR #27 400 611 65.47% 1314 3088 42.55% 
Undisclosed JAR #28 20 136 14.71% 87 683 12.74% 
Undisclosed JAR #29 318 1062 29.94% 966 5394 17.91% 
Undisclosed JAR #30 403 1049 38.42% 1076 3935 27.34% 
Undisclosed JAR #31 1062 5881 18.06% 0 0 0.00% 
Totals 47279 110377 42.83% 60090 331067 18.15% 

 

After analyzing the code coverage for each Jar file, we determined that web application frameworks 
such as Stripes, Java Server Faces (JSF), and Struts showed some of the higher code coverage 
percentages. For some of the libraries such as Xerces, the JaCoCo tool used to measure code 
coverage failed to track the amount of lines in the library. This fact could potentially skew the 
averages to some degree.  

The lack of higher code coverage can be attributed to several factors:  

 The fuzzer is unable to instantiate contextual objects. Many frameworks and libraries depend 
on contextual objects that contain session information and contextual data. Since we are 
unable to create these objects programmatically to fit the context of the individual library, 
code coverage suffers.  

 The fuzzer does not have access to various properties and input files necessary for many 
libraries to operate. Several libraries such as Struts or Spring depend on XML input files to 
provide critical mapping information. The fuzzer does not have access to these files and is 
unable to generate them at runtime.  

 The fuzzer cannot instantiate many web specific objects. When instantiating objects such as 
HttpRequest, often times the randomly generated data passed to the constructors is incorrect 
and results in an invalid object. 

  Lack of memory and computing power. Since there are potentially millions of permutations 
generated of each set of arguments passed to a constructor or method. Executing each one 
of these permutations became impossible due to constant out of memory issues. Therefore it 
was decided to only run a maximum of 1000 randomly chosen permutations per method.  

Code coverage data was also tracked in terms of instructions and branches. The average 
percentage of instructions covered was 36.72 and only 6.30 in terms of branches.  
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5. CONCLUSIONS 

A previous study done by Aspect Security researchers has determined that 26% of library downloads 
have known vulnerabilities. Static and dynamic analysis tools lack the capability to exercise the 
majority of code in libraries referenced by an application even though this is often 80% of the overall 
source. Using a custom developed fuzzer along with Contrast, we have created a program that 
analyzes the security of Java libraries. This program is able to exercise a significant portion of a 
library’s source code.  

The development of this tool required the use of several technologies for fuzzing, measuring code 
coverage, as well as memory and performance management. The resulting program provides the 
user with valuable hazard and vulnerability data that may have previously been unknown. We have 
analyzed thirty Java libraries and uncovered 2325 potential hazards and 19 possible vulnerabilities. 
This program can be used to help an organization determine the security posture of the libraries they 
use every day.  

We anticipate that there is much left to do in the effort to ensure the use of secure libraries. Our 
program is able to provide users with a previously unattainable visibility into a library’s security 
posture. With increasing focus on library security, we hope to continue our research to give 
programmers the ability to make educated decisions when developing software.  

5.1 Opportunities 

We believe encouraging more secure libraries and components in the software marketplace is one of 
the most critical cyber security challenges there is.  Although in our research significant progress was 
made, there is much more work to be done in the effort to analyze Java libraries for security. The first 
task would be to collect more data by analyzing other popular libraries. It would also be extremely 
important to analyze previous versions of libraries. The data collected by analyzing older versions of 
libraries would tell organizations whether or not their legacy applications are at risk.  

In order to provide more useful data and better code coverage of libraries, it would be necessary to 
improve our fuzzing technology. To improve coverage, the fuzzer would need to provide contextual 
information that libraries require. This includes various property and configuration files as well as 
mocking of objects that have valid data. If we are able to provide libraries with valid objects that are 
necessary for proper execution, it would ensure greater code coverage and provide us with the ability 
to discover more vulnerabilities.  

Performance and memory management is another area in need of improvement. Code coverage 
would improve with the ability to execute methods with more permutations of mocked objects. 
Currently we limit a method’s execution to 1000 times with permutations of only a few objects due to 
performance reasons. This task could be accomplished improving memory management as well as 
distributing the programs execution over multiple CPU’s.  

For more accurate fuzzing, the creation of a Genetic Algorithm (GA) could ensure much greater code 
coverage. The GA would learn which objects are successful in instantiating a class or executing a 
method. This improvement in accuracy with the fuzzer would greatly increase both performance and 
code coverage. Valuable memory space would be saved by garbage collecting all unnecessarily 
created instances in the object pool and freeing up space for other more useful data. Performance 
would also increase due to the GA being able to learn when a method has been fully executed. 
Learning when a method’s branches and instructions have been explored would allow us to limit the 
executions count of these methods and free up threads to run queued tasks.  
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7. ACRONYMS 

 

API Application Programming Interface  
CSV Comma Separated Values 
CVE Common Vulnerabilities and Exposures 
DB Database 
DOS Denial of Service attack 
GA Genetic Algorithm 
IAST Interactive Application Security Testing 
IE7 Internet Explorer 7 
JaCoCo Java Code Coverage Library 
JAR Java Archive 
JSF Java Server Faces 
MAC Media Access Control 
MIT Massachusetts Institute of Technology 
SQL Structured Query Language 
XML Extensible Markup Language 
XML Extensible Markup Language 
XXE XML External Entity 
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